
Generics

A major part of software engineering is building components that not only have well-
defined and consistent APIs, but are also reusable. Components that are capable of
working on the data of today as well as the data of tomorrow will give you the most
flexible capabilities for building up large software systems.

In languages like C# and Java, one of the main tools in the toolbox for creating
reusable components is generics, that is, being able to create a component that can
work over a variety of types rather than a single one. This allows users to consume
these components and use their own types.

To start off, let’s do the “hello world” of generics: the identity function. The identity
function is a function that will return back whatever is passed in. You can think of this
in a similar way to the echo command.

Without generics, we would either have to give the identity function a specific type:

Or, we could describe the identity function using the any type:

While using any is certainly generic in that it will cause the function to accept any and
all types for the type of arg, we actually are losing the information about what that
type was when the function returns. If we passed in a number, the only information we
have is that any type could be returned.

Hello World of Generics

function identity(arg: number): number {
 return arg;
}

function identity(arg: any): any {
 return arg;
}

Docs Community Tools

Search Docs

https://www.typescriptlang.org/
https://www.typescriptlang.org/docs/home
https://www.typescriptlang.org/community
https://www.typescriptlang.org/tools

Instead, we need a way of capturing the type of the argument in such a way that we
can also use it to denote what is being returned. Here, we will use a type variable, a
special kind of variable that works on types rather than values.

We’ve now added a type variable T to the identity function. This T allows us to capture
the type the user provides (e.g. number), so that we can use that information later.
Here, we use T again as the return type. On inspection, we can now see the same type
is used for the argument and the return type. This allows us to traffic that type
information in one side of the function and out the other.

We say that this version of the identity function is generic, as it works over a range
of types. Unlike using any, it’s also just as precise (ie, it doesn’t lose any information) as
the first identity function that used numbers for the argument and return type.

Once we’ve written the generic identity function, we can call it in one of two ways. The
first way is to pass all of the arguments, including the type argument, to the function:

Here we explicitly set T to be string as one of the arguments to the function call,
denoted using the <> around the arguments rather than ().

The second way is also perhaps the most common. Here we use type argument
inference — that is, we want the compiler to set the value of T for us automatically
based on the type of the argument we pass in:

Notice that we didn’t have to explicitly pass the type in the angle brackets (<>); the
compiler just looked at the value "myString", and set T to its type. While type
argument inference can be a helpful tool to keep code shorter and more readable, you

function identity<T>(arg: T): T {
 return arg;
}

let output = identity<string>("myString");
// ^ = let output: string

let output = identity("myString");
// ^ = let output: string

Docs Community Tools

Search Docs

https://www.typescriptlang.org/
https://www.typescriptlang.org/docs/home
https://www.typescriptlang.org/community
https://www.typescriptlang.org/tools

may need to explicitly pass in the type arguments as we did in the previous example
when the compiler fails to infer the type, as may happen in more complex examples.

When you begin to use generics, you’ll notice that when you create generic functions
like identity, the compiler will enforce that you use any generically typed parameters
in the body of the function correctly. That is, that you actually treat these parameters
as if they could be any and all types.

Let’s take our identity function from earlier:

What if we want to also log the length of the argument arg to the console with each
call? We might be tempted to write this:

When we do, the compiler will give us an error that we’re using the .length member
of arg, but nowhere have we said that arg has this member. Remember, we said earlier
that these type variables stand in for any and all types, so someone using this function
could have passed in a number instead, which does not have a .length member.

Let’s say that we’ve actually intended this function to work on arrays of T rather than T
directly. Since we’re working with arrays, the .length member should be available. We
can describe this just like we would create arrays of other types:

Working with Generic Type Variables

function identity<T>(arg: T): T {
 return arg;
}

function loggingIdentity<T>(arg: T): T {
 console.log(arg.length);

Property 'length' does not exist on type 'T'.

 return arg;
}

Property 'length' does not exist on type 'T'.

function loggingIdentity<T>(arg: T[]): T[] {
 console.log(arg.length);
 return arg;
} Docs Community Tools

Search Docs

https://www.typescriptlang.org/
https://www.typescriptlang.org/docs/home
https://www.typescriptlang.org/community
https://www.typescriptlang.org/tools

You can read the type of loggingIdentity as “the generic function
loggingIdentity takes a type parameter T, and an argument arg which is an array of
Ts, and returns an array of Ts.” If we passed in an array of numbers, we’d get an array
of numbers back out, as T would bind to number. This allows us to use our generic
type variable T as part of the types we’re working with, rather than the whole type,
giving us greater flexibility.

We can alternatively write the sample example this way:

You may already be familiar with this style of type from other languages. In the next
section, we’ll cover how you can create your own generic types like Array<T>.

In previous sections, we created generic identity functions that worked over a range of
types. In this section, we’ll explore the type of the functions themselves and how to
create generic interfaces.

The type of generic functions is just like those of non-generic functions, with the type
parameters listed first, similarly to function declarations:

We could also have used a different name for the generic type parameter in the type,
so long as the number of type variables and how the type variables are used line up.

function loggingIdentity<T>(arg: Array<T>): Array<T> {
 console.log(arg.length); // Array has a .length, so no more error
 return arg;
}

Generic Types

function identity<T>(arg: T): T {
 return arg;
}

let myIdentity: <T>(arg: T) => T = identity;

function identity<T>(arg: T): T {
 return arg;
} Docs Community Tools

Search Docs

https://www.typescriptlang.org/
https://www.typescriptlang.org/docs/home
https://www.typescriptlang.org/community
https://www.typescriptlang.org/tools

We can also write the generic type as a call signature of an object literal type:

Which leads us to writing our first generic interface. Let’s take the object literal from
the previous example and move it to an interface:

In a similar example, we may want to move the generic parameter to be a parameter
of the whole interface. This lets us see what type(s) we’re generic over (e.g.
Dictionary<string> rather than just Dictionary). This makes the type parameter
visible to all the other members of the interface.

let myIdentity: <U>(arg: U) => U = identity;

function identity<T>(arg: T): T {
 return arg;
}

let myIdentity: { <T>(arg: T): T } = identity;

interface GenericIdentityFn {
 <T>(arg: T): T;
}

function identity<T>(arg: T): T {
 return arg;
}

let myIdentity: GenericIdentityFn = identity;

interface GenericIdentityFn<T> {
 (arg: T): T;
}

function identity<T>(arg: T): T {
 return arg;
}

let myIdentity: GenericIdentityFn<number> = identity;Docs Community Tools

Search Docs

https://www.typescriptlang.org/
https://www.typescriptlang.org/docs/home
https://www.typescriptlang.org/community
https://www.typescriptlang.org/tools

Notice that our example has changed to be something slightly different. Instead of
describing a generic function, we now have a non-generic function signature that is a
part of a generic type. When we use GenericIdentityFn, we now will also need to
specify the corresponding type argument (here: number), effectively locking in what
the underlying call signature will use. Understanding when to put the type parameter
directly on the call signature and when to put it on the interface itself will be helpful in
describing what aspects of a type are generic.

In addition to generic interfaces, we can also create generic classes. Note that it is not
possible to create generic enums and namespaces.

A generic class has a similar shape to a generic interface. Generic classes have a
generic type parameter list in angle brackets (<>) following the name of the class.

This is a pretty literal use of the GenericNumber class, but you may have noticed that
nothing is restricting it to only use the number type. We could have instead used
string or even more complex objects.

Generic Classes

class GenericNumber<T> {
 zeroValue: T;
 add: (x: T, y: T) => T;
}

let myGenericNumber = new GenericNumber<number>();
myGenericNumber.zeroValue = 0;
myGenericNumber.add = function (x, y) {
 return x + y;
};

// @strict: false
class GenericNumber<T> {
 zeroValue: T;
 add: (x: T, y: T) => T;
}
// ---cut---
let stringNumeric = new GenericNumber<string>();
stringNumeric.zeroValue = ""; Docs Community Tools

Search Docs

https://www.typescriptlang.org/
https://www.typescriptlang.org/docs/home
https://www.typescriptlang.org/community
https://www.typescriptlang.org/tools

Just as with interface, putting the type parameter on the class itself lets us make sure
all of the properties of the class are working with the same type.

As we covered in our section on classes, a class has two sides to its type: the static side
and the instance side. Generic classes are only generic over their instance side rather
than their static side, so when working with classes, static members can not use the
class’s type parameter.

If you remember from an earlier example, you may sometimes want to write a generic
function that works on a set of types where you have some knowledge about what
capabilities that set of types will have. In our loggingIdentity example, we wanted
to be able to access the .length property of arg, but the compiler could not prove
that every type had a .length property, so it warns us that we can’t make this
assumption.

Instead of working with any and all types, we’d like to constrain this function to work
with any and all types that also have the .length property. As long as the type has
this member, we’ll allow it, but it’s required to have at least this member. To do so, we
must list our requirement as a constraint on what T can be.

To do so, we’ll create an interface that describes our constraint. Here, we’ll create an
interface that has a single .length property and then we’ll use this interface and the
extends keyword to denote our constraint:

stringNumeric.add = function (x, y) {
 return x + y;
};

console.log(stringNumeric.add(stringNumeric.zeroValue, "test"));

Generic Constraints

function loggingIdentity<T>(arg: T): T {
 console.log(arg.length);

Property 'length' does not exist on type 'T'.

 return arg;
}

Property 'length' does not exist on type 'T'.

Docs Community Tools

Search Docs

https://www.typescriptlang.org/docs/handbook/classes.html
https://www.typescriptlang.org/
https://www.typescriptlang.org/docs/home
https://www.typescriptlang.org/community
https://www.typescriptlang.org/tools

Because the generic function is now constrained, it will no longer work over any and all
types:

Instead, we need to pass in values whose type has all the required properties:

You can declare a type parameter that is constrained by another type parameter. For
example, here we’d like to get a property from an object given its name. We’d like to
ensure that we’re not accidentally grabbing a property that does not exist on the obj,
so we’ll place a constraint between the two types:

interface Lengthwise {
 length: number;
}

function loggingIdentity<T extends Lengthwise>(arg: T): T {
 console.log(arg.length); // Now we know it has a .length property
 return arg;
}

loggingIdentity(3);

Argument of type 'number' is not assignable to parameter of type
'Lengthwise'.
Argument of type 'number' is not assignable to parameter of type
'Lengthwise'.

loggingIdentity({ length: 10, value: 3 });

Using Type Parameters in Generic Constraints

function getProperty<T, K extends keyof T>(obj: T, key: K) {
 return obj[key];
}

let x = { a: 1, b: 2, c: 3, d: 4 };

getProperty(x, "a");
getProperty(x, "m"); Docs Community Tools

Search Docs

https://www.typescriptlang.org/
https://www.typescriptlang.org/docs/home
https://www.typescriptlang.org/community
https://www.typescriptlang.org/tools

When creating factories in TypeScript using generics, it is necessary to refer to class
types by their constructor functions. For example,

A more advanced example uses the prototype property to infer and constrain
relationships between the constructor function and the instance side of class types.

Argument of type '"m"' is not assignable to parameter of type
'"a" | "b" | "c" | "d"'.
Argument of type '"m"' is not assignable to parameter of type '"a"
| "b" | "c" | "d"'.

Using Class Types in Generics

function create<T>(c: { new (): T }): T {
 return new c();
}

class BeeKeeper {
 hasMask: boolean;
}

class ZooKeeper {
 nametag: string;
}

class Animal {
 numLegs: number;
}

class Bee extends Animal {
 keeper: BeeKeeper;
}

class Lion extends Animal {
 keeper: ZooKeeper;
}

function createInstance<A extends Animal>(c: new () => A): A {
 return new c();
}

Docs Community Tools

Search Docs

https://www.typescriptlang.org/
https://www.typescriptlang.org/docs/home
https://www.typescriptlang.org/community
https://www.typescriptlang.org/tools

Previous

Enums
How TypeScript enums work

The TypeScript docs
are an open source
project. Help us
improve these pages
by sending a Pull
Request ❤

Contributors to this
page: Last updated: Dec 28,

2020

This page loaded in
3.335 seconds.

Customize Site Colours:

Popular Documentation Pages

Basic Types
JavaScript primitive types inside
TypeScript

Advanced Types
TypeScript language extensions
to JavaScript

Functions
How to provide types to
functions in JavaScript

Interfaces
How to provide a type shape to
JavaScript objects

Variable Declarations
How to create and type
JavaScript variables

TypeScript in 5 minutes
An overview of building a
TypeScript web app

TSConfig Options
All the configuration options for
a project

Classes
How to provide types to
JavaScript ES6 classes

Community

createInstance(Lion).keeper.nametag;
createInstance(Bee).keeper.hasMask;

RC DR OT MH

RC 13+

Get Help Blog GitHub Repo
Docs Community Tools

Search Docs

https://www.typescriptlang.org/docs/handbook/enums.html
https://github.com/microsoft/TypeScript-Website/blob/v2/packages/documentation/copy/en/handbook-v1/Generics.md
https://www.typescriptlang.org/docs/handbook/basic-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/functions.html
https://www.typescriptlang.org/docs/handbook/interfaces.html
https://www.typescriptlang.org/docs/handbook/variable-declarations.html
https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes.html
https://www.typescriptlang.org/tsconfig
https://www.typescriptlang.org/docs/handbook/classes.html
https://www.typescriptlang.org/community
https://devblogs.microsoft.com/typescript/
https://github.com/microsoft/TypeScript/#readme
https://www.typescriptlang.org/
https://www.typescriptlang.org/docs/home
https://www.typescriptlang.org/community
https://www.typescriptlang.org/tools

Made with ♥ in Redmond,
Boston, SF & Dublin

© 2012-2021 Microsoft
Privacy

Using TypeScript

Get Started Download Community

Playground TSConfig Ref Why TypeScript

Design Code Samples▼

Community Chat @TypeScript Stack Overflow

Web Updates Web Repo

Docs Community Tools

Search Docs

https://www.typescriptlang.org/docs/handbook/generics.html
https://go.microsoft.com/fwlink/?LinkId=521839
https://www.typescriptlang.org/docs/home
https://www.typescriptlang.org/download
https://www.typescriptlang.org/community
https://www.typescriptlang.org/play/
https://www.typescriptlang.org/tsconfig
https://www.typescriptlang.org/why-create-typescript
https://www.typescriptlang.org/branding
https://www.typescriptlang.org/play/#show-examples
https://discord.gg/typescript
https://twitter.com/TypeScript
https://stackoverflow.com/questions/tagged/typescript
https://github.com/microsoft/TypeScript-Website/issues/130
https://github.com/microsoft/TypeScript-Website
https://www.typescriptlang.org/
https://www.typescriptlang.org/docs/home
https://www.typescriptlang.org/community
https://www.typescriptlang.org/tools

